Chemical Sensitivity – MCS: Substanzen, die die Vanilloidrezeptorgruppe aktivieren können

Literaturrechere

Während eines Kongresses für Umweltmedizin vor ein paar Jahren erklärte ein Professor den anwesenden Umweltkranken, warum es so wichtig ist, sich mit den Hintergründen von chemikalieninduzierten Krankheiten auseinander zu setzen. Von den Zuhörern hatten sich einige beschwert, dass sein Vortrag von zu hohem Niveau für sie sei. Der Professor entgegnete, dass es unglaublich schwer sei, Recht zu bekommen, wenn man durch Chemikalien erkrankt sei, und dass es kaum Ärzte gäbe, die sich mit den schadstoffinduzierten Krankheiten wie MCS auskennen würde. Wenn ein Erkrankter gesünder werden und Recht bekommen wolle, müsse er sich mit der Materie auseinandersetzen, Fachbegriffe lernen und so zu einem kleinen Experten werden. Nur dann hätte man eine Chance. Wie recht er hatte.

Sternentänzer hat begriffen, dass der Professor absolut recht hatte. Sie ist eine von den Erkrankten, die zum stetig größer werdenden Kreis derer gehören, die nicht aufgeben, und immer am nachforschen sind, um Antworten zu finden. Heute hat Sternentänzer eine wertvolle Ausführung zu einer Pall/Anderson Studie für uns, damit wir MCS, deren Ursachen und die damit verbundenen Symptome besser verstehen. Der Artikel ist fachlich nicht einfach, aber er enthält wichtige Fakten für Euch. Also denkt an den Professor und beißt Euch durch, um ebenfalls zu einem kleinen Experten zu werden.

Lest, was Sternentänzer Euch zu sagen hat:

Die Substanzen, die im nachfolgenden Blogartikel aufgeführt werden, beruhen auf dem Artikel von Pall und Andersen von 2004. Sie sind in der Lage, die Vanilloidrezeptorgruppe zu aktivieren.

Ich habe diese Tabelle für mich selber gemacht. Da ich kein Chemiker bin, habe ich mir z.B. bei Alkylbenzole aufgeschrieben, dass es sich um ein Molekül mit einem Benzolring und einer Kette C2H5 handelt. Ich kann mir dann das Molekül so etwas besser vorstellen. Wenn es Euch nicht interessiert, dann überspringt es ruhig.
Da im Artikel von Pall und Anderson hauptsächlich allgemeine Gruppen angegeben wurden, habe ich zu ihnen einige Beispiele rausgesucht und sie mit einem Sternchen gekennzeichnet.

Einige Faustregeln im Hinblick auf die TRP Rezeptoren:

TRPV1: Alles was scharf ist wie Pfeffer, Ingwer, Vanillin (auch altes Papier)
TRPA1: Alles was scharf ist wir Zwiebeln, Knoblauch, Meerrettich, Kohl,…
TRPV3: ätherische Öle in vielen Kräutern wie Thymian, Majoran, Kümmel, Sellerie, Rosmarin

Agonisten von TRP Rezeptoren und wo sie vorkommen bzw. in welchen Bereichen sie verwendet werden

Alkylbenzole (Ring+C2H5)
Gruppenbezeichnung für am Benzol-Ring durch Alkyl-Gruppen substituierte aromatische Kohlenwasserstoffe. Zu diesen Alkylaromaten (vgl. Alkylaryl…) gehören die in Einzelstichwörtern behandelten Toluol u. die Xylole (diese Alkylbenzole  werden oft mit Benzol zusammengefasst unter der Abk. BTX), Ethylbenzol, Mesitylen, Durol, Cumol, Cymol u.a., die als Produkte der Alkylierung von Benzol, heute bevorzugt aus Kohle oder Erdöl, durch thermische oder katalytische Prozesse mit anschließender Isolierung gewonnen werden (s. Petrochemie). Alkylbenzole lassen sich am Kern oder in der Seitenkette substituieren (s. Substitution). Die wichtigsten Oxidationsprodukte der Alkylbenzole sind Carbonsäuren bzw. Phenol.

Benzol
Verw.: Als Beimischung zu Motorkraftstoffen, als Ausgangsmaterial für die Herstellung vieler B.-Derivate (z.B. Anilin, Nitrobenzol, Styrol, Nylon, Synthesekautschuk, Kunststoffe, waschaktive Stoffe, Phenol, Insektizide, Farbstoffe u.v.a.), als Lösungsmittel für Kautschuklacke, Wachse, Harze, Öle, u. als Extraktionsmittel.

Toluol – Methylbenzol
Toluol wird unter anderem durch Kfz-Verkehr freigesetzt, weil es im Benzin enthalten ist, und entsteht in kleinen Mengen bei der unvollständigen Verbrennung von organischen Stoffen, wie zum Beispiel beim Rauchen

Xylol – Dimethylbenzol
Xylol wird hauptsächlich als Lösungsmittel verwendet. Es dient zur Herstellung von Kunststoffen, Farben und Klebstoffen. Es wird Kraftstoffen zur Erhöhung der Oktanzahl beigemengt.

– Ethylbenzol*
Verw.: E. wird fast ausschließlich zur Herstellung von Styrol verwendet, nur ein kleiner Teil des Ethylbenzols wird als Lösungsmittel eingesetzt oder dient als Zwischenprodukt, z.B. zur Herst. von Diethylbenzol oder Acetophenon.

– Mesitylen-Trimethylbenzol *
Mesitylen wird als Lösungsmittel für Harze und Gummi sowie zur organischen Synthese (zum Beispiel von Antioxidantien) verwendet. Es kommt in Petroleum und Steinkohlenteer vor.

– Durol – Tetramethylbenzole *
dient zur Herstellung wärmebeständiger Alkydharze, Polyester, Polyamide und Polyimide, Weichmachern, Kunstharzen usw.

– Cumol -2-Phenylpropan, Isopropylbenzol *
Verw.: C. dient überwiegend zur Herstellung von Phenol, C.-haltige Alkylierungsprodukte des Benzols werden zur Octanzahl-Verbesserung für Vergaserkraftstoffe eingesetzt. Sulfonierung führt zum Cumolsulfonat, das als Hydrotropikum (Tenside) Verwendung findet.

– Cymol – 1-Methyl-4-isopropylbenzol *
Die physiologische Wirkung ähnelt der des Toluols (LD50 Ratte p.o. 4,7 g/kg). p-C. kommt in etherischen Ölen (Kümmelöl, Eukalyptusöl u.s.w.) vor und ist mit vielen natürlich vorkommenden Terpenen strukturverwandt (p-Menthan).
Verw.: als Lösungsmittel, Duftstoff in Kosmetika, zur Synthese von Carvacrol, Thymol usw.

Ether
R1-O-R2  H3C-O-CH3 Dimethylether
Vork.: Methylether sind in der Natur weit verbreitet, als Phenolether in den Glykosiden, vor allem bei Alkaloiden, Blütenfarbstoffen, Geruchsstoffen (Vanillin); Ether-Bindungen liegen in den Zuckern und Polysacchariden (Cellulose, Stärke) vor.
Verw.: Wegen ihrer außerordentlichen Lsg.-Eig. finden Ether als Lösemittel und Extraktionsmittel, die Glykolether auch als Weichmacher in der Industrie.
Verw.: Einige Ether werden als Narkosemittel, andere als Aerosol-Treibgase eingesetzt. Technisch wichtige Ether sind u.a. Diethylether, Diisopropylether, Tetrahydrofuran, Dioxan, Anisol, Diphenylether.

Chloracetophenone und o-Chlorobenzylidene malononitrile
Tränengas

Cyclohexanone
Verw.: Lösungsmittel für viele Lackrohstoffe, Polyvinylchlorid und bas. Farbstoffe, in Form von Ketonharzen (Cyclohexanonharze), zur Verbesserung von Verlauf und Glanz von Lacken und als Zusatz für Lederdeckfarben, Spezialdruckfarben und Abbeizmittel.

Alkohole
Ethanol („normaler“ Alkohol)
Propanol Desinfektionsmittel, Lösungsmittel

Methylanthranilate
Anthranilate – Bezeichnung für Salze u. Ester der o-Aminobenzoesäure.
Verw.: Als Ausgangsstoff für die Synthese von Azofarbstoffen, Folsäure, Sonnenschutzmitteln, Lokalanästhetika und Riechstoffen.

Aldehyde
Aldehyde sind durch die Aldehyd-Gruppe-C (=O) H charakterisiert. Ihre Benennung erfolgt

1. durch Trivialnamen (z.B. Vanillin, Acrolein)

2. ersetzt man bei den lateinischen Namen der Säuren, die bei der Oxidation der betreffenden Aldehyde entstehen, die Endung durch -aldehyd, so z.B. Formaldehyd. Die Aldehyde sind sehr reaktionsfähige Verbindungen.

Anw.: Die niederen Aldehyde als Rohstoffe für die Synthese von Kunststoffe und Kunstharze (Aminoplaste, Phenoplaste), als Desinfektionsmittel, zum Gerben etc., die höheren Aldehyde zur Herstellung von Riechstoffen (Aldehyd-Noten in Parfüms). Aromatische Aldehyde werden zu Aromen, Pharmazeutika, Pflanzenschutzmitteln und Farbstoffen verarbeitet.

– Acetaldehyd*
Hauptsächlich dient Acetaldehyd als Zwischenprodukt in der chemischen Industrie. So wird er als Bestandteil von Farben, zur Herstellung von Parfümen und Färbemitteln, in der Gummi-, Papier- und Gerbindustrie, als Konservierungsstoff von Früchten und Fisch, als Geschmacksstoff, zur Gelatinehärtung und als Treibstoffbeimischung eingesetzt. Acetaldehyd dient auch zur Herstellung von Essigsäure sowie Pentaerythrit.

– Glutaraldehyd *
OHC-CH2-CH2-CH2-CHO
Glutaraldehyd wirkt bakterizid und dient daher zur Konservierung und Desinfektion von Geräten und Instrumenten in der kosmetischen Industrie als Härter für Gelatine, da es mit Proteinen durch Quervernetzung reagiert. Als Gerbmittel gibt Glutaraldehyd weiche, widerstandsfähige Leder. Es wird als Hydrophobierungsmittel (wasserabweisend) für Papier, Tapeten, Textilien und dgl. eingesetzt.

– Zimtaldehyd  (Cinnamaldehyd, 3-Phenyl-2-propenal) *
H5C-CH=CH-CHO
Verw.: Zur Parfümierung von Seifen, zu Gewürzen, Aromen, zur Herstellung des Zimtalkohols usw.

– Benzaldehyd *
(künstliches Bittermandelöl). H5C6-CHO
Verw.: Als chemische Reagenz, Lösemittel zur Herstellung von Triphenylmethan-Farbstoffen, Zimtsäure, Pharmazeutika u. Parfümen, Marzipan
Pflaumen und Pfirsiche.

– Glyoxal *(Dialdehyd)
C2H2O2
Glyoxal dient als Rohstoff für Synthesen und wird auch in der Textilveredlung sowie als Komponente in Desinfektionsmitteln eingesetzt.

Formaldehyd
bildet sich spurenweise auch bei der unvollständigen Verbrennung von Holz, Kohle, Zucker usw.
Desinfizieren und Sterilisieren, zur Konservierung, z.B. in kosmetischen Präparaten (hier jedoch nur mit Einschränkungen zugelassen), zum Beizen des Saatgutes, Vulkanisationsbeschleunigern, zum Aufbau künstlicher Gerbstoffe, als Faserschutzmittel für Wolle, in der Textilveredlung zur Permanent-Press-Ausrüstung von Rayon und Zellwolle, zum Stabilisieren von Grundierungsbädern in der Naphthol-Färberei, in einigen Kunstharzen.
Kommt natürlich in Äpfeln und Weintrauben vor.
Entsteht bei allen unvollständigen Verbrennungen, Flächendesinfektionsmittel, Duroplast, Bakelit.

Säuren (niedrieger ph Wert)
– Essigsäure (H3C-COOH)
– Propansäure (H3C-CH2-COOH)

Schwefeldioxid SO2
In der Lebensmittelindustrie findet SO2 unter der Bezeichnung E 220 als Konservierungsmittel und Antioxidationsmittel Verwendung, vor allem für Trockenfrüchte, Kartoffelgerichte, Fruchtsäfte, Marmelade und Wein. SO2 dient auch zur Herstellung von vielen Chemikalien, Medikamenten und Farbstoffen und zum Bleichen von Papier und Textilien.

Toluoldiisocyanat
In der chemischen Industrie ist TDI ein wichtiges Zwischenprodukt für die Herstellung von Klebstoffen, Schaumstoffen (Polyurethane), Elastomeren, Beschichtungen und hochwertigen Lacken zur Verwendung in der Automobilindustrie, für Flugzeug- oder Triebwagenlackierungen.

Chlor
Verw.: Chlor ist eines der wichtigsten Grundprodukt der chem. Industrie. Der größte Teil der Produktion wird zur Herst. von Vinylchlorid u. PVC verwendet (in der BRD etwa 25%), sowie von anderen organischen Chlor-Verbindungen (Chloroform, Methylenchlorid, Tetrachlormethan, Chloropren, Chloraromaten usw.) und Zwischenprodukten (Phenol, Ethylenglykol, Propylenoxid, Glycerin u.a.). Weiterhin werden Cl2 und aktives Cl enthaltende Verbindungen zum Bleichen von Papier u. Cellulose, sowie zur Desinfizierung von Trinkwasser u. Freibädern eingesetzt.

Alkane (Methan, Ethan, Propan)
Vork: Erdöl. Erdgas, Kohle
Verw.: (s. Abb.) Als Lösemittelgemische., Brennstoffe, Treibstoffe, zur Fettsynthese, zur Überführung in Olefine, die als Ausgangsstoffe für Alkylbenzole eine große Rolle für die synth. biologisch abbaubarer Waschmittel spielen, zur Gewinnung von Fettsäuren durch Luftoxidation.

Halogenierte Benzole
– Chloraromaten
Sammelbezeichnung für verschiedene kernchlorierte aromatische Verbindungen wie z.B. die (im allg. in Einzelstichwörtern behandelten) Chlorbenzole (Mono-, Di-, Tri- etc. Chlorbenzol), Chlornaphthaline, Chlortoluole, Chlorbiphenyle (s.a. PCB) u.a. aromatische Chlorkohlenwasserstoffe (CKW); auch Chlorphenole und Derivate wie 2,3,7,8-Tetrachlordibenzo[1,4] dioxin können hierher gerechnet werden. Die Chloraromaten finden vielfache Verwendung, z.B. als Zwischenprodukt bei der Herstellung von Arzneimitteln, Schädlingsbekämpfungs- und Pflanzenschutzmitteln, Desinfektionsmitteln, Konservierungsstoffen, Farbstoffen usw.

– Chlorbenzol*
Verw.: Lösungsmittel für Öle, Fette, Harze, Kautschuk, Ethylcellulose, Wärmeübertragungsmittel, Zwischenprodukt bei der Herstellung von Insektiziden, Farbstoffen, Arzneimitteln, Duftstoffen, Phenol usw.

Ketone
Von Aceton abgeleiteter Gruppenname für Verb. der allg. Formel R1R2C=O, wobei die org. Reste Alkyl- u./od. Aryl-Gruppen darstellen bzw. zum Ring geschlossen sein können.
Vork.: In der Natur sind Ketone sehr verbreitet, z.B. in Form von Sexualhormonen u.a. Steroidketonen, als Terpenketone in ätherische Ölen und Duftstoffen.
Ketone finden auch Verwendung als Ausgangsstoffe für synthetische Produkte in der pharmazeutische Farbstoff-, Riechstoff-, Schädlingsbekämpfungs- und Kunststoff-Industrie (s. Ketonharze).

Autor: Sternentänzer für CSN – Chemical Sensitivity Network, 10. 12.2007

Literatur:

1. Pall ML, Anderson JH (2004): The Vanilloid Receptor as a Putative Target of Diverse Chemicals in Multiple Chemical Sensitivity. Archives of Environmental Health July 2004 [Vol. 59 (No. 7)]

2. CD Römpp Chemie Lexikon, Version 1.0, Stuttgart/New York: Georg Thieme Verlag 1995

3. CD Wikipedia deutsch 2007

Für Menschen mit Chemical Sensitivity existiert keine Barrierefreiheit

Für Chemikaliensensible existiert keine Barrierefreiheit

Einer Person mit MCS zu sagen, es sei nur „ein wenig Duftstoff oder ein bisschen von einer Chemikalie“ in der Luft, ist genauso, wie einem Rollstuhlfahrer zu sagen, dass da „nur ein paar Stufen sind, die er überwinden muss“.

Anerkennung von MCS durch Stadt Zürich

christian-maske.jpgChristian Schifferle, Präsident der MCS Liga Schweiz, gehört zu den Chemikalien-sensiblen, die trotz schweren Reaktionen auf Alltagschemikalien zwei Dinge nie verlieren: Mut und Beharrlichkeit. Jetzt zeigt es sich, dass es sich auszahlt, wenn man den Kopf nicht in den Sand steckt, ganz gleich wie dick es kommt. Die Stadt Zürich baut als erste europäische Stadt Wohnraum für Menschen mit MCS.

Schadstofffreier Wohnraum gesünder für alle Menschen

fotos_mcs_alu-vorbau_wohnwa.jpg Über zehn Jahre lebt der Schweizer in einem Wohnwagen, den er mit Alu ausgekleidet hat, um Ausgasungen von Materialien zu  unterbinden. Keine normale Wohnung war so schadstofffrei, dass er es lange darin aushielt. Reaktionen auf lösemittelhaltige Farbe, Ausdünstungen aus Teppichboden, rauchende oder Duftstoffe benutzende Mitbewohner, irgendetwas war immer, was ihn krank werden ließ. Seit der Gründung der MCS Liga traf der rührige Schweizer auf viele weitere Chemikaliensensible, denen es ähnlich geht und hatte nur noch ein Ziel vor Augen: MCS-gerechter Wohnraum.

Jetzt hat Christian Schifferle es geschafft, sein lang gehegter Traum wird wahr. Im schweizerischen Uster wurde vergangene Woche die Wohnungsbaugenossenschaft „Gesundes Wohnen MCS“ gegründet. Deren Ziel ist es, in der gesamten Schweiz baubiologischen Wohnraum zu schaffen. Dieser soll in erster Linie Menschen mit MCS zugute kommen, aber selbstverständlich auch anderen Bevölkerungskreisen. Gleichzeitig stellte sich ein größerer Erfolg ein, die Stadt Zürich sagte zu, dass sie ein MCS Apartmenthaus baut. Zukunftsgerichtet denkend, erhofft man sich von Seiten der Stadt dadurch auch Bündelung von Knowhow für weitere gesunde Wohnprojekte, die vielen Menschen zugute kommen werden.

Sieben Zeitungsartikel in kürzester ZeitAnerkennung MCS

Zum Wochenende erschien ein weiterer Artikel im Züricher Tages-Anzeiger über die Umweltkrankheit MCS, mit dem gleichen Foto eines Artikels über Christian Schifferle wie vor einem Jahr. Thema war, dass die Stadt Zürich nun ca. 12 MCS-gerechte Wohnungen bauen will. Für Anfangs März sind Baubiologe Guido Huwiler und Christian Schifferle von der Stadt zur Begutachtung von möglichem Bauland eingeladen. Guido Huwiler hat bereits einen Beratungsauftrag durch die Stadt erhalten, das Projekt ist also auf gutem Weg. Im Endeffekt bedeutet dies eine weitgehende Anerkennung von Multiple Chemical Sensitivity (MCS) durch die Stadt Zürich. Ein Erfolg, der in Europa seinesgleichen sucht.

Nichts ist umsonst und Anstrengung lohnt

Erst vergangene Woche hatte der 53-jährige Schweizer MCS Aktivist eine große Strapaze auf sich genommen. Er flog von Zürich nach Hamburg, um an einer Talkshow teilzunehmen, die im Anschluss an einen Beitrag über ihn in der ZDF Sendung 37° ausgestrahlt wurde. Es war sehr schwierig für Christian Schifferle, denn eine Aktivkohlemaske allein reicht nicht, um hundertprozentig vor Reaktionen durch Flugzeugbenzin, Dieselabgase bei Start und Landung zu schützen. Im Flugzeug selbst ist mit Antiflammschutzmitteln, Rückständen von Reinigungslösungen und vor allem mit Chemikalien aus Parfums und Aftershaves der Mitreisenden zu rechnen. Trotz aller berechtigten Bedenken ging alles gut vonstatten. Christian Schifferle hat die Reise gut überstanden und sich auch von seinem Auftritt bei Johannes B. Kerner ganz gut erholt. Die Sendung 37° wurde am Folgetag wiederholt und durch eine spannende Expertendiskussion mit Dr. Tino Merz, Rechtsanwalt Tamm und Prof. Dr. Eikmann ergänzt. Christian Schifferles Einsatz hat sich also gelohnt, es war ein voller Erfolg. Über 100 positive Reaktionen erreichten ihn, auch bei der Schweizer Partnerorganisation MCS SOS und bei CSN und anderen deutschen MCS-Gruppen gab große Resonanz.

Ausruhen ist nicht, denn auf Los geht’s los

Für ein Ausruhen bleibt kaum Zeit, denn in etwas zwei Wochen wird die MCS- Wohnbaugenossenschaft, als deren Präsident Christian Schifferle gewählt wurde, konstituiert und beginnt mit der Arbeit. Der Start lief vom Fleck weg gut und verspricht weiteren Erfolg. Innerhalb von drei Wochen gab es sieben Zeitungsartikel über MCS in Schweizer Zeitungen. Unterstützung durch die Medien ist den Schweizer Chemikaliensensiblen weiterhin gewiss. Alles in Allem also ein toller Erfolg, den die Schweizer MCS Aktivisten zu verbuchen haben.

foto_wohnwagen_schnee-ii.jpg Als Krönung ist zu erwarten, dass für Christian Schifferle persönlich die beschwerliche Zeit im betagten Wohnwagen einem Ende zugeht. „Es wird auch wirklich Zeit“, meint er gegenüber CSN, „denn noch einmal zügeln (umziehen) schafft der treue alte Bursche wahrscheinlich nicht mehr. Schon beim letzten Zügeln hatte ich große Bedenken. Ja, und wohin auch?“

Zürich handelt zukünftsorientiert und nachhaltig

Sobald die Realisierung des Projektes beginnt, wird auch Heidi Stremminger mit von der Partie sein. Die Leiterin des Vereins MCS-SOS verfügt durch den Bau ihres eigenen MCS Hauses nämlich sehr viel Erfahrung mit der Auswahl schadstofffreier Baumaterialien und Lösungen für MCS-typische Problemstellungen während der Bauphase.

Die Stadt Zürich hat eine gute Entscheidung getroffen, indem sie 10-12 Apartments für Chemikaliensensible schaffen will, denn kein Anderer als Chemikaliensensible kann mit soviel know how einen größeren Beitrag zu gesundem Bauen leisten. Ein Risiko besteht ohnehin nicht, meinte Arno Roggo Leiter der Liegenschaftsverwaltung, denn die Wohnungen können in jedem Fall vermietet werden. Zürich zeigt Weitblick, den gesundes Wohnen ist nicht nur ein gegenwärtiger kurzfristiger Trend, sondern, wie in vielen anderen Ländern erkannt, bedeutet es Gesundheit und Leistungsfähigkeit, statt Krankheit durch Sick Building’s (kranke Gebäude), und es erhöht die Lebensqualität aller Menschen, die in solchen gesunden Wohnräumen wohnen und arbeiten dürfen.

Autor: Silvia K Müller, CSN – Chemical Sensitivity Network, Februar 2008

Umweltmedizin: Chemical Sensitivity (MCS) durch Farbstoffe in Bonbons

kind-mit-maske.jpg Nahrungsmittel ohne Farbstoffe sind in unserer heutigen Gesellschaft nahezu undenkbar. Bonbons sieht man ihren Farbstoffgehalt an, doch sie werden ganz selbstverständlich auch Wurst, genauso wie Medikamenten, oder Butter zugesetzt. Künstliche Farbstoffe gehören zu den zehn häufigsten Nahrungsmittelallergenen (1). Künstliche wie auch natürliche Farbstoffe können Asthma, Allergien, Hyperaktivität, sogar Anaphylaxis, und schwere Langzeitfolgen verursachen. Der Zusammenhang zwischen Farbstoffen und Allergien gilt als lange bekannt, ist jedoch allgemein unterdiagnostiziert (2,3). Provokationstests sind Pricktests diagnostisch überlegen (3,4,7). Bei Allergien auf Farbstoffe ist Meidung die einzig wirksame Therapie.

Japanische Wissenschaftler der Universität von Yokohama dokumentierten den Fall eines fünfjährigen Mädchens, bei dem eine schwere Chemikalien- sensitivität (MCS) und eine Medikamenten- unverträglichkeit attestiert wurde, welche durch Süßigkeiten, die mit Azofarbstoffen gefärbt waren, ausgelöst wurde (2). Das Kind musste aufgrund der MCS im weiteren Verlauf die Schule wechseln.

Farbstoffe in Nahrungsmitteln
„Das Auge isst mit“, nehmen Hersteller von Nahrungsmittel zum Anlass, um Nahrungsmittel durch Farbgebung ansehnlicher und oft auch frischer aussehen zu lassen. Die meisten Farbstoffe dienen ausschließlich der Optik. Bonbons ohne Farbe beispielsweise werden kaum verzehrt, sie gelten als langweilig und nicht ansprechend. Andere Farbstoffe werden zugesetzt, um Farbschwankungen von Nahrungsmitteln auszugleichen, die durch unterschiedliche Erntezeit bedingt sind. Ungefähr 40 Lebensmittelfarbstoffe, gewonnen aus tausenden von chemischen und natürlichen Verbindungen, sind zugelassen, sie schließen die Farbpalette fast lückenlos. Zu ihnen gehören sogar Metalle wie Aluminium, Silber und Gold, die zum Einsatz kommen, wenn nur die Oberfläche eingefärbt werden soll. Am stärksten verbreitet sind rote, gelbe, orange und schwarze Farbtöne. Blau findet sich wegen seines „Chemiecharakters“, außer bei Süßigkeiten, eher selten.

Sind Farbstoffe in Nahrungsmitteln unbedenklich?
In Nahrungs- und Genussmitteln werden natürliche, künstliche und naturidentische Farbstoffe eingesetzt. Die wenigsten Farbstoffe sind jedoch pflanzlichen Ursprungs, meistens stammen sie aus dem Chemielabor und sind synthetische Nachbildungen von in der Natur vorkommenden Substanzen oder gänzlich chemische Kreationen. Chemische Farbstoffe haben keinen guten Ruf, da sie als Allergieauslöser bekannt sind und sogar Krebs auslösen können. Den schlechtesten Ruf besitzen Azofarbstoffe, die in Nahrungsmitteln, Kosmetika und Medikamenten eingesetzt werden. Sie wurden ursprünglich aus Teer hergestellt, später dann auf Erdöl- oder Erdgasbasis und gelten als die gesundheitsschädlichste Farbstoffgruppe. Ihr Vorteil ist, dass sie hitze- und lichtunempfindlich sind, meist säurestabil und zudem sehr viel preisgünstiger als natürliche bzw. naturidentische Farbstoffe. Der gelbe Azofarbstoff Tatrazin gilt als besonders bedenklich (6, 8, 9, 17,18) wie das nachfolgende Fallbeispiel veranschaulicht. Gefährdet sind vor allem Menschen, bei denen eine Aspirinunverträglichkeit vorliegt (3,17,18).

Farbstoffe können, wie bestimmte Nahrungsmittel, versteckte Ursache für viele Beschwerden sein. Sie sind als Auslöser für Asthma, Hautreaktionen, Schwellungen, Kopfschmerzen, Hyperaktivität, ADHD, Bettnässen, Ohrenentzündung und in schweren Fällen sogar Anaphylaxis bekannt (4,7,9,10,12,17,18). Nur ein Provokationstest bringt letztendlich objektive Bestätigung (3,5,6,7,9,10). Pricktests zeigen oft keine verlässlichen Resultate.

Fallbeispiel: Azofarben – Auslöser von Chemikaliensensitivität (MCS) und schwerer Medikamentenunverträglichkeit
Welche tragischen nachhaltigen Konsequenzen bereits geringe Mengen von Farbstoffen haben, wurde  durch einen Fallbericht über ein kleines japanisches Mädchen deutlich, das durch Genuss von bunten Bonbons eine Multiple Chemical Sensitivity und Medikamentenunverträglichkeiten entwickelte. In der allergologischen Abteilung der Yokohama Universität wurde der Fall genauestens untersucht und dokumentiert (3).

Das fünfjährige Mädchen litt unter schweren wiederkehrenden Reaktionen, begleitet von Urticaria (Nesselsucht), Quincke Ödem, Atemnot, Kopfschmerzen, Verlust des Bewusstseins und Bauchschmerzen, die nicht zu bekämpfen waren. Die Beschwerden verschlimmerten sich durch verschiedene Behandlungen mit Antihistaminika und intravenös verabreichten Corticosteroiden. Der Zustand des Mädchens verschlechterte sich so weit, dass es in die Notaufnahme des Krankenhauses eingewiesen werden musste. Dort besserten sich die Symptome, bis auf Schwellungen und leichtes Fieber. Die Ärzte der Klinik ordneten daraufhin Kontrolle und Beobachtung der Ernährung zuhause an.

Das Führen eines Ernährungstagebuches deckte letztendlich auf, dass die Symptome jeweils nach dem Essen von farbigen Süßigkeiten wie Bonbons und Jellybeans (knallig bunte Zuckerdragees) auftraten. Die Ärzte der University of Yokohama brachten die Reaktionen des Mädchens daraufhin mit Azofarben in den Süßigkeiten in Zusammenhang. Die Mutter erinnerte sich, dass der erste schwere Vorfall erstmalig unmittelbar nach dem Essen von roten Bonbons (sie enthielten Tatrazin und Brillantblau) aufgetreten war.
Es wurden deshalb offene Provokationstests (mit Einwilligung der Eltern) mit Nahrungsmittelzusatzstoffen und entzündungs-hemmenden Medikamenten (NSAIDs) nach Elimination der Süßigkeiten durchgeführt. Die Tests brachten den Nachweis, dass sie auf Azofarbstoffe, Aspirin, Benzoesäure, Acetaminophen und Anästhetika reagiert. Ein Pricktest mit diesen Substanzen brachte kein Ergebnis.

Nachdem Azofarben in der Ernährung des Kindes vermieden wurden, traten die Schwellungen und das leichte Fieber nur noch sehr selten auf. Das Mädchen litt jedoch häufig unter Ausschlag, Schwindel, Kopfschmerzen, Erschöpfung, Engegefühl auf der Brust und Übelkeit, obwohl vermutete Auslöser weggelassen wurden. Die Ärzte stellten fest, dass sie mit diesen Symptomen nun auf viele chemische Gerüche wie Zigarettenrauch, Desinfektionsmittel, Ethanol, Weichspüler und Waschmittel, Lösemittel, Reinigungsmittel, Parfüm und Haarpflegemittel reagierte. Sie bekam die Diagnose schwere Multiple Chemical Sensitivity (MCS), ausgelöst durch Azofarbstoffe. Zur Stabilisierung wurden ihr Vitamine und Glutathion verabreicht. Die Aktivitäten des Mädchens wurden durch die MCS im Alltag in öffentlichen Bereichen sehr stark eingeschränkt. Weil sie Symptome in einigen Räumlichkeiten der Klinik bekam, stellten die Ärzte dort vor ihren Besuchen einen Luftfilter im Raum auf. Auch in der Schule bekam das Mädchen Beschwerden durch Schulmaterialien und Reinigungsmittel. Als die Schule den Eltern verweigerte, einen Luftfilter in der Klasse aufstellen zu dürfen, musste das Mädchen die Schule wechseln. Am Ende zogen die Eltern mit ihrem Kind aufs Land, wo es eine alte Schule besuchen konnte, in der sie symptomfrei am Unterricht teilnehmen konnte.

Autor: Silvia K. Müller, CSN, Januar, 2008

Literatur:

  1. Speer F., Food allergy: the 10 common offenders. Am Fam Physician. 1976 Feb;13(2):106-12
  2. Wilson BG, Bahna SL., Adverse reactions to food additives, Allergy and Immunology Section, Louisiana State University Health Sciences Center, Ann Allergy Asthma Immunol. 2005 Dec;95(6):499-507
  3. Naoko Inomata, Hiroyuki Osuna, Hiroyuki Fujita, Toru Ogawa and Zenro Ikezawa, Multiple chemical sensitivities following intolerance to azo dye in sweets in a 5-year-old girl. Allergology International 2006;55(2):203-205
  4. Wilson BG, Bahna SL., Adverse reactions to food additives, Allergy and Immunology Section, Louisiana State University Health Sciences Center, Ann Allergy Asthma Immunol. 2005 Dec;95(6):499-507
  5. Huijbers GB, Colen AA, Jansen JJ, Kardinaal AF, Vlieg-Boerstra BJ, Martens BP, Masking foods for food challenge: practical aspects of masking foods for a double-blind, placebo-controlled food challenge.Department of Human Nutrition, TNO Nutrition and Food Research Institute, Zeist, The Netherlands. J Am Diet Assoc. 1994 Jun;94(6):645-9
  6. Orchard DC, Varigos GA. Fixed drug eruption to tartrazine, Dermatology Department, Royal Children’s Hospital, Melbourne, Victoria, Australia. Australias J Dermatol. 1997 Nov;38(4):212
  7. Boris M, Mandel FS., Foods and additives are common causes of the attention deficit hyperactive disorder in children. Ann Allergy. 1994 May;72(5):462-8
  8. Thuvander A., Hypersensitivity to Azo coloring agents. Tartrazine in food may cause rash and asthma, Lakartidningen. 1995 Jan 25;92(4):296-8.
  9. Mikkelsen H, Larsen JC, Tarding F., Hypersensitivity reactions to food colours with special reference to the natural colour annatto extract (butter colour), Arch Toxicol Suppl. 1978;(1):141-3.
  10. Zenaidi M, Pauliat S, Chaliier P, Fratta A, Girardet JP., Allergy to food colouring. A prospective study in ten children, Tunis Med. 2005 Jul;83(7):414-8
  11. Nish WA, Whisman BA, Goetz DW, Ramirez DA., Anaphylaxis to annatto dye: a case report.Department of Medicine, Wilford Hall USAF Medical Center, Lackland AFB, Texas, Ann Allergy. 1991 Feb;66(2):129-31
  12. DiCello MC, Myc A, Baker JR Jr, Baldwin JL, Anaphylaxis after ingestion of carmine colored foods: two case reports and a review of the literature, Department of Internal Medicine, University of Michigan Medical Center, Allergy Asthma Proc. 1999 Nov-Dec;20(6):377-8
  13. Lucas CD, Hallagan JB, Taylor SL. The role of natural color additives in food allergy. International Association of Color Manufacturers, USA. Adv Food Nutr Res. 2001;43:195-216.
  14. Zenaidi M, Pauliat S, Chaliier P, Fratta A, Girardet JP., Allergy to food colouring. A prospective study in ten children, Tunis Med. 2005 Jul;83(7):414-8.
  15. Kagi MK, Wuthrich B, Johansson SG., Campari-Orange anaphylaxis due to carmine allergy. Lancet. 1994 Jul 2; 344(8914):60-1.
  16. Denner WH., Colourings and preservatives in food, Hum Nutr Appl Nutr. 1984 Dec;38(6):435-49.
  17. Dipalma JR., Tartrazine sensitivity, Am Fam Physician. 1990 Nov; 42(5):1347-50
  18. John Emsley, Was it something you ate? Oxford University Press, 2005

Umweltmedizin: Patienten mit Chemical Sensitivity (MCS) reagieren auf Chemikalien weit unterhalb von Richtwerten

industrie-mcs.jpg

Während Chemikaliensensitivität (MCS) vor Jahrzehnten eine Krankheit war, die kaum jemand kannte, gibt es mittlerweile immer mehr Menschen, die darunter leiden. Man geht von ca. 15% der Bevölkerung aus, die auf Alltagschemikalien reagieren, die auf die Allgemeinbevölkerung keinen nennenswerten Einfluss haben. Japanische Wissenschaftler halten unsere nahezu luftdichte Bauweise für einen der Hauptgründe für den Anstieg von MCS. Die Vermeidung von Auslösern gilt bisher als die wirkungsvollste Therapie.

Erkenntnis Basis für eine Studie
Ein japanisches Wissenschaftlerteam der Universität Tokio erkannte Multiple Chemical Sensitivity (MCS) als ernstzunehmendes Problem an, dass als Resultat unserer modernen nahezu luftdichten Gebäudekonstruktionen zunehmend eingetreten ist. Hieraus ergab sich für das Forscherteam die Aufgabestellung für eine Studie. Man setzte sich zum Ziel, verantwortliche Chemikalien und ihre Wirkschwelle bei Patienten mit Hypersensibilitätsreaktionen zu identifizieren. Hierzu maßen die Japaner Expositionen gegenüber Carbonyl- und Lösemittelverbindungen bei 15 MCS Patienten und gleichzeitig bei einer Kontrollgruppe. Diese beiden Schadstoffgruppen sollten bei der Patientengruppe, im Gegensatz zur Kontrollgruppe, möglicherweise Reaktionen hervorrufen.

Identifizierung von Auslösern
Um herauszufinden, ob MCS Patienten tatsächlich auf besagte Auslöser reagieren, wurde ein neues Messverfahren eingesetzt, eine Aktiv-Passivsammlermethode. Durch diese Methoden hoffte das Wissenschaftlerteam zu belegen, ob Patienten auf die als verantwortlich bezeichneten Chemikalien reagieren oder nicht.

Studie zeigt klares Resultat
Das Team der Universität Tokiostellte fest, dass Chemikalien bei MCS Patienten Hypersensibilitätsreaktionen auslösen und diese von Patient zu Patient variieren. Darüber hinaus konnte festgestellt werden, dass die Konzentrationsschwelle der Chemikalien, die Hypersensibilitätsreaktionen bei einigen MCS Patienten auslösten, weit unterhalb der Richtlinien für Innenraumluft der WHO und zuständigen Japanischen Behörde lag. Dies bedeutet, dass MCS Patienten tatsächlich, wie immer wieder von dieser Patientengruppe berichtet, auf minimale Konzentrationen bestimmter Chemikalien reagieren und Richtwerte kein Schutz für sie darstellen.

MCS Patienten vermeiden Chemikalien, um Reaktionen zu verhindern
Der durchschnittliche Expositionswert während der siebentägigen Untersuchungsphase, war bei MCS Patienten niedriger als bei der Kontrollgruppe ohne MCS. Einige wenige Patienten bildeten eine Ausnahme, da sie auf ihrem Arbeitsplatz noch Chemikalien ausgesetzt waren. Die Wissenschaftler der Universität Tokio deuteten dieses Ergebnis im Rahmen der Studie so, dass MCS Patienten versuchen, von Expositionen gegenüber Chemikalienverbindungen fernzubleiben, die bei ihnen Symptome auslösen. MCS Patienten betreiben also von sich aus genau das, was Umweltmediziner ihren Patienten als Therapie Nummer 1 vorschlagen: Expositionsvermeidung.

Autor: Silvia K. Müller, CSN, Jan. 2008

Literatur: Shinohara N, Mizukoshi A, Yanagisawa Y., Identification of responsible volatile chemicals that induce hypersensitive reactions to multiple chemical sensitivity patients, Institute of Environmental Studies, The University of Tokyo, 1: J Expo Anal Environ Epidemiol. 2004 Jan; 14(1):84-91.