Archive for category ‘Heavy Metals‘

German Medical Association warns: “Swine flu vaccine” unsuitable for patients suffering from environmental diseases and other chronic multi-system illnesses

“Swine flu vaccine” unsuitable for patients suffering from environmental diseases

Press release of the German Professional Association of Environmental Medicine (Deutscher Berufsverband der Umweltmediziner – DBU)

from 26. October 2009

Swine flu vaccine is unsuitable for patients with environmental diseases and other chronic multi-system illnesses.  Pandemrix® poses substantial health risk with respect to mass immunization programs due to the lack of proof of safety.  Because of the producer’s release from liability by the German Federal Government (BRD), the risk of adverse reactions and/or permanent damage due to the vaccine rests with the patient.

The German Professional Association of Environmental Medicine (DBU) has, in spite of press releases from the BRD, the Paul-Ehrlich-Institute, as well as the vaccine producer’s assurances of safety, serious concerns relating to Pandemrix® (GlaxoSmithKline), the only vaccine which has been approved for mass vaccination by the BRD.

The DBU discusses at this point neither the medical use of immunization in general nor the necessity of such measures in the, up until now, mild course of the swine flu pandemic.

Our criticism is directed only against the pandemic vaccine Pandemrix®.

  • There exists considerable doubt as to the effectiveness of the vaccine: during the licensing phase, the vaccine tested had a 40% higher portion of virus antigen (5. 25µg) than the vaccine (3.75µg) now being delivered. An unequivocal consensus has not been reached as to whether the vaccination should be given once or twice a season !!!
  • There exists considerable doubt concerning the safety of the adjuvanted active amplifier since it is being used for the first time. The vaccine contains 27.4mg AS03, an emulsion of polysorbate, squalene and tocopherol. Sufficient studies are lacking, because in the test phase, only the development of antibody titers was determined as a surrogate criterion, and not any potential adverse reactions.
  • The producer as well as government agencies have concealed the fact that squalene, if used subcutaneously or intramuscularly is an inflammatory immune activation immunogen, unlike when ingested. (Squalene is, among other things, for example, naturally contained in olive oil.)
  • Autoimmune diseases can be provoked by squalene; already existing ones can be activated. Squalene has been connected with the emergence of Guillan-Barré Syndrome (GBS) and is now considered a trigger for Gulf War Syndrome (GWS). In animal studies squalene brought on rheumatoid arthritis.
  • Squalene from food sources is mainly incorporated into membranes in the body. The production of squaline antibodies resulting from an immunization sets off chronic inflammation of the membranes, which explains diseases such as Gulf War Syndrome and also degenerative neurological diseases such as Multiple Sclerosis, Amyotrophic Lateral Sclerosis, Chronic Inflammatory Demyelinating Polyneuropathy and Guillan-Barré Syndrome.
  • The delivery of vaccine in multiple dose ampules is obsolete. In single dose ampules the mercury used for preservation, as in thimerosal – which is included in Pandemrix – would be unnecessary.  Also, mercury has been proven to set off autoimmune diseases.
  • Since the vaccine has not been tested on either young children or pregnant women (Ethics Commission objection), the call to give preference in the first phase of vaccination to precisely this particularly endangered segment of the population represents an improper and totally unjustifiable field test.
  • The vaccine poses a higher risk than the swine flu itself for patients with environmental illness and for patients with compromised immune systems (e.g. AIDS).
  • The vaccine producer GlaxoSmithKline (GSK), according to the contract with the BRD, is largely exempt from liability. In case of damage from the vaccination, the affected vaccinee would have to sue the government and therefore the country of Germany, usually a futile exercise.
  • To avoid the trap of liability, the doctor giving the vaccination must meticulously inform the patient of all risks concerning the vaccination and the vaccine. It is recommended to give this information in the presence of an assistant and to have it be confirmed by the patient’s signature. The explanation should also include the liability features. Also the indication that other, lower risk vaccines are available in Europe and that due to a faulty decision by the German government, they are currently not available to the German population. This information should definitely be included in the explanation.

For general and environmental health considerations the DBU urgently advises against carrying out a vaccination with Pandemrix® ! Hans-Peter Donate

for the board of the German Professional Association of Environmental Medicine (DBU)

Translation: CSN – Chemical Sensitivity Network

Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children

Children with learning disabilityAmong dietary factors, learning and behavior are influenced not only by nutrients, but also by exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and alter neuronal plasticity. 

Neurons lacking in plasticity are a factor in neurodevelopmental disorders such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity. Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder. 

Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and increase oxidative stress among children with autism. These dietary factors may be directly related to the development of behavior disorders and learning disabilities. 

Mercury, either individually or in concert with other factors, may be harmful if ingested in above average amounts or by sensitive individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a result of some manufacturing processes, and its consumption can also lead to zinc loss. Consumption of certain artificial food color additives has also been shown to lead to zinc deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury elimination.

Since high fructose corn syrup and artificial food color additives are common ingredients in many foodstuffs, their consumption should be considered in those individuals with nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury or unable to effectively metabolize and eliminate it from the body. 


Dufault R, Schnoll R, Lukiw WJ, Leblanc B, Cornett C, Patrick L, Wallinga D, Gilbert SG, Crider R., Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children, Behav. Brain Funct. 2009 Oct 27;5(1):44.

Air Pollutants From Abroad a Growing Concern, Says New Report

Pollution respects no borders it travels across borders

Plumes of harmful air pollutants can be transported across oceans and continents — from Asia to the United States and from the United States to Europe — and have a negative impact on air quality far from their original sources, says a new report by the National Research Council.  Although degraded air quality is nearly always dominated by local emissions, the influence of non-domestic pollution sources may grow as emissions from developing countries increase and become relatively more important as a result of tightening environmental protection standards in industrialized countries.  

“Air pollution does not recognize national borders; the atmosphere connects distant regions of our planet,” said Charles Kolb, chair of the committee that wrote the report and president and chief executive officer of Aerodyne Research Inc.  “Emissions within any one country can affect human and ecosystem health in countries far downwind.  While it is difficult to quantify these influences, in some cases the impacts are significant from regulatory and public health perspectives.” 

The report examines four types of air pollutants: ozone; particulate matter such as dust, sulfates, or soot; mercury; and persistent organic pollutants such as DDT.  The committee found evidence, including satellite observations, that these four types of pollutants can be transported aloft across the Northern Hemisphere, delivering significant concentrations to downwind continents.  Ultimately, most pollutants’ impacts depend on how they filter down to the surface.  

Current limitations in modeling and observational capabilities make it difficult to determine how global sources of pollution affect air quality and ecosystems in downwind locations and distinguish the domestic and foreign components of observed pollutants.  Yet, some pollutant plumes observed in the U.S. can be attributed unambiguously to sources in Asia based on meteorological and chemical analyses, the committee said.  For example, one study found that a polluted airmass detected at Mt. Bachelor Observatory in central Oregon took approximately eight days to travel from East Asia.  

The health impacts of long-range transport vary by pollutant.  For ozone and particulate matter — which cause respiratory problems and other health effects — the main concern is direct inhalation.  While the amount of ozone and particulate matter transported on international scales is generally quite small compared with domestic sources, neither of these pollutants has a known “threshold,” or concentration below which exposure poses no risk for health impacts.  Therefore, even small incremental increases in atmospheric concentrations can have negative impacts, the committee said.  For instance, modeling studies have estimated that about 500 premature cardiopulmonary deaths could be avoided annually in North America by reducing ozone precursor emissions by 20 percent in the other major industrial regions of the Northern Hemisphere. 

For mercury and persistent organic pollutants, the main health concern is that their transport and deposition leads to gradual accumulation on land and in watersheds, creating an increase in human exposure via the food chain.  For example, people may consume mercury by eating fish.  There is also concern about eventual re-release of “legacy” emissions that have been stored in soils, forests, snowpacks, and other environmental reservoirs. 

In addition, the committee said that projected climate change will lead to a warmer climate and shifts in atmospheric circulation, likely affecting the patterns of emission, transport, transformation, and deposition for all types of pollution.  However, predicting the net impacts of the potential changes is extremely difficult with present knowledge. 

In the coming decades, man-made emissions are expected to rise in East Asia, the report says.  These increases could potentially be mitigated by increasingly stringent pollution control efforts and international cooperation in developing and deploying pollution control technology. 

To enhance understanding of long-range transport of pollution and its impacts, the committee recommended a variety of research initiatives, such as advancing “fingerprinting” techniques to better identify source-specific pollutant characteristics, and examining how emissions from ships and aircraft affect atmospheric composition and complicate the detection of pollution from land-based sources.  The committee emphasized developing an integrated “pollution source-attribution” system that improves capabilities in emissions measurements and estimates; atmospheric chemical and meteorological modeling; long-term, ground-based observations; satellite remote sensing; and process-focused field studies.  

Moreover, the committee stressed that the United States, as both a source and receptor of long-range pollution, has an interest in remaining actively engaged in air pollutants that travel abroad, including support of more extensive international cooperation in research, assessment, and emissions control efforts. 

The report was sponsored by the U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration, NASA, and National Science Foundation.  The National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council make up the National Academies.  They are independent, nonprofit institutions that provide science, technology, and health policy advice under an 1863 congressional charter.  Committee members, who serve pro bono as volunteers, are chosen by the Academies for each study based on their expertise and experience and must satisfy the Academies’ conflict-of-interest standards.  The resulting consensus reports undergo external peer review before completion.  For more information, visit National Academies  A committee roster follows. 

Reference: National Academy of Sciences, Air Pollutants From Abroad a Growing Concern, Says New Report, Washington, September 29. 2009

Harvard: Lead in bone associated with increased risk of death from cardiovascular disease in men

Patient with heart disease from lead


Growing evidence shows that exposure to lead in the environment is associated with cardiovascular disease, including increased risk of hypertension. However, those studies have looked at lead concentrations in blood, not bone lead, a better indicator of cumulative lead exposure over time. In a new study, researchers at the Harvard School of Public Health (HSPH) and the University of Michigan School of Public Health found that bone lead was associated with a higher risk of death from all causes, particularly from cardiovascular disease. It is the first study to analyze the association between bone lead and mortality.


The study appears online on September 8, 2009, on the website of the journal Circulation and will appear in a later print edition. 

“The findings with bone lead are dramatic. It is the first time we have had a biomarker of cumulative exposure to lead and the strong findings suggest that, even in an era when current exposures are low, past exposures to lead represent an important predictor of cardiovascular death, with important public health implications worldwide,” said Marc Weisskopf, assistant professor of environmental and occupational epidemiology at HSPH and lead author of the study.

Air pollution was the main source of lead in the environment in recent years, though it has been decreasing since leaded gasoline was banned in the U.S. in the mid-1990s. Most of the lead circulating in the body is deposited in bone and remains there for years, unlike blood lead, which has a half life of about 30 days. Since adverse effects from lead on the cardiovascular system would be expected to show up over time, the researchers expected that bone lead would be a better marker of chronic toxicity.


The researchers, led by Weisskopf and senior author Howard Hu, professor of environmental health, epidemiology and internal medicine at the University of Michigan School of Public Health, analyzed data from 868 participants in the Department of Veterans Affairs Normative Aging Study, a study of aging in men that began in 1963. Blood lead and bone lead—analyzed using X-ray fluorescence—were measured for each of the participants. The results showed that the risk of death from cardiovascular disease was almost six times higher in men with the highest levels of bone lead compared to men with the lowest levels. The risk of death from all causes was 2.5 times higher in men with the highest levels of lead compared to those with the lowest levels. The results appeared independent of age, smoking, education, race, alcohol, physical activity, BMI, high density lipoprotein or total cholesterol levels, hypertension or diabetes.


There are a number of mechanisms, such as increased oxidative stress, by which lead exposure may result in cardiovascular mortality, say the authors. They also note that, in addition to high blood pressure, exposure to lead has been associated with widened pulse-pressure (an indicator of arterial stiffening) and heart disease.


Given that bone lead may be a better biomarker of cumulative lead exposure than blood lead, it may be the best predictor of chronic disease from exposure to lead in the environment. “In addition to spurring further public health measures to reduce exposure to lead and to begin monitoring for cumulative exposure, mechanistic and clinical research is needed to determine if opportunities exist to conduct targeted screening and treatment that can further reduce the burden of cardiovascular disease for the millions of adults who have had years of elevated lead exposure in the past,” said Hu.


Reference:    Harvard School of Public Health, Lead in bone associated with increased risk of death from cardiovascular disease in men, Boston, MA, September 9, 2009

Mechanisms of lead-induced poisoning

Lead is a very toxic metal

Lead is a ubiquitous environmental toxin that is capable of causing numerous acute and chronic circulatory, neurological, hematological, gastrointestinal, reproductive and immunological pathologies.  

The mechanism of lead induced toxity is not fully understood. The prime targets to lead toxicity are the heme synthesis enzymes, thiol-containing antioxidants and enzymes (superoxide dismutase, catalase, glutathione peroxidase, glucose 6-phosphate dehydrogenase and antioxidant molecules like GSH). The low blood lead levels are sufficient to inhibit the activity of these enzymes and induce generation of reactive oxygen species and intensification oxidative stress.  

Oxidative stress plays important role in pathogenesis of lead-induced toxity and pathogenesis of coupled disease. The primary target of lead toxicity is the central nervous system. There are different cellular, intracellular and molecular mechanisms of lead neurotoxicity: such as induction of oxidative stress, intensification of apoptosis of neurocites, interfering with Ca(2+) dependent enzyme like nitric oxide synthase.  

Population studies have demonstrated a link between lead exposure and subsequent development of hypertension and cardiovascular disease. The vascular endothelium is now regarded as the main target organ for the toxic effect of lead. Lead affects the vasoactive function of endothelium through the increased production of reactive oxygen species, inactivation of endogenous nitric oxide and downregulation of soluble guanylate cyclase by reactive oxygen species, leading to a limiting nitric oxide availability, impairing nitric oxide signaling.  

This review summarizes recent findings of the mechanism of the lead-induced toxity and possibilities of its prevention. 

Reference:  Nemsadze K, Sanikidze T, Ratiani L, Gabunia L, Sharashenidze T., Mechanisms of lead-induced poisoning, Tbilisi State Medical University; National Center of child development, Georgian Med News. 2009 Jul-Aug;(172-173):92-6.